rbatpro.ru

Удар – что характерно для него? Элементарная теория удара. Динамический коэффициент. Продольный и поперечный удар Что такое «прыжок с парашютом на стабилизацию падения»

Нагрузки, не удовлетворяющие условиям плавности нагружения, называются ударными.

Физические условия разрушения при ударной нагрузке сильно отличаются от статических. В условиях далеких от разрушения статическую и ударную нагрузки можно сравнивать по их деформирующему эффекту, считая, что равные деформации есть признак эквивалентности нагружения.

Из повседневного опыта известно, что при падении груза на балку прогиб будет больше, чем просто от веса груза. Почему это происходит?

Пусть груз падает на балку с высоты
(рис. 195). При соприкосновении с балкой груз имеет скорость

За очень малый промежуток времени соударения скорость уменьшается до нуля. Приближенно вычислим среднюю величину ускорения

С корость направлена вниз, ускорение будет направлено вверх, так как движение замедляется. Время соударения принимают равным=0,010,001 сек; так как эта величина стоит в знаменателе, ускорение будет велико. При наличии ускорения всегда есть сила инерции, которая в данном случае будет тоже велика.

Сила инерции противоположна ускорению, то есть направлена вниз. В момент удара к весу груза добавляется сила инерции, поэтому ударная сила в несколько раз больше статической. Соответственно, деформация от ударной нагрузки в несколько раз больше. Сложность расчета состоит в том, что вычислить ударную силу как сумму
не удается, так как ускорение переменное и закон его изменения не поддается определению. Расчет проводится по балансу энергий.

Расчет на удар сводится к статическому введением динамического коэффициента, который указывает, во сколько раз при ударе деформация и сила больше чем при статическом приложении равного груза.

    Определение динамического коэффициента при ударе

(без учета массы ударяемой системы)

Принимаем упрощающие допущения:

    Удар абсолютно неупругий, т.е. после соударения падающий груз и ударяемая система движутся вместе с одинаковой скоростью.

    Масса ударяемой системы намного меньше веса падающего груза.

    При ударе справедлив закон Гука.

Вычислим динамический коэффициент для случая продольного и поперечного (изгибающего) удара (рис. 196).

Обозначим:
- вес груза

-высота падения

-скорость в момент удара

-максимальное перемещение центра удара.

На диаграмме (
, ) закону Гука соответствует прямая линия. Из справедливости закона Гука следует

,

При ударе кинетическая энергия падающего груза переходит в потенциальную энергию упругой деформации системы
.

Вычислим и
. По закону изменения кинетической энергии можно записать

.

Падение происходит из состояния покоя, поэтому

.

Работа силы тяжести равна произведению силы на путь

Таким образом, получаем

При вычислении потенциальной энергии деформации упругой системы предполагается, что при динамической нагрузке она вычисляется, как и при статической, а следовательно равна площади диаграммы (
,);

Приравниваем энергии

Решение уравнения со знаком минус не годится, так как
всегда больше
.

Получили формулу для динамического коэффициента при ударе:

Под ударом понимается взаимодействие движущихся навстречу друг другу тел в результате их соприкосновения, связанное с резким изменением скоростей точек этих тел за весьма малый промежуток времени.

Ударная нагрузка является динамической. Время удара измеряется в тысячных, а иногда и миллионных долях секунды, а сила удара достигает большой величины, например, действие кузнечного молота на кусок металла, удар падающего груза при забивке свай и др.

За очень малый промежуток времени скорость ударяющегося тела становится равной нулю. В этот момент напряжения и деформации в системе достигают наибольших значений. Целью расчета на удар и является определение наибольших деформаций и напряжений.

Система, подвергающаяся удару, может испытывать различные деформации, такие как сжатие, растяжение, изгиб, кручение, изгиб с кручением и др. Поэтому различают продольный, поперечный и скручивающий удары (рис. 13.5).

Рис. 13.5. Схемы ударных нагрузок

На рис. 13.5, а и 13.5, б показаны продольные удары – сжимающий и растягивающий, на рис 13.5, в показан поперечный изгибающий удар.

Скручивающий удар имеет место при падении груза G с высоты h или при резком снижении угловой скорости вала с маховиком, например, при внезапной его остановке (рис. 13.5, г, д).

Точное решение задачи о напряжениях и деформациях при ударе затруднительно, потому что неизвестен закон изменения скорости при соударении тел и, следовательно, действующих при ударе нагрузок, неизвестны силы сопротивления при ударе, чрезвычайно сложен закон распространения скорости деформации в системе, воспринимающей удар.

В практике применяют упрощенные методы расчета, основанные на следующих основных допущениях:

1) деформации стержня от ударяющего груза распространяются по всей длине стержня, они подчиняются закону Гука и подобны деформациям, возникающим от статического приложения того же груза. Поэтому связь между динамическими силами и перемещениями остается такой же, как и при статической нагрузке;

2) опорные устройства, как правило, полагают абсолютно жесткими;

3) ударяющее тело является абсолютно жестким и при ударе не отскакивает от системы.

Изучение напряжений и деформаций при ударе основано на использовании закона сохранения энергии. При этом предполагается, что кинетическая энергия падающего груза А численно равна потенциальной энергии деформации упругой системы U :

Рассмотрим сначала расчет на удар в случаях, когда масса упругого тела, подвергающегося удару, мала и ею можно пренебречь. Продольный ударгруза G падает с высоты h и ударяется о стержень, вызывая его сжатие на величину , которая больше деформации стержня ∆ ст при статическом действии груза G (рис. 13.6).



Кинетическая энергия падающего груза равна:

Потенциальная энергия численно равна площади треугольника диаграммы F дин ∆ дин (рис. 13.7).

Рис.13.6. Схема удара сжатием

Рис. 13.7. Схема для определения потенциальной

энергии деформации при ударе

С учетом зависимости А = U имеем:

Выразим нагрузки через деформации:

Получим квадратное уравнение для определения

В формуле перед корнем следует взять знак «плюс», так как , тогда получим:

Динамический коэффициент будет равен:

Зная коэффициент, можно определить и напряжения:

Динамический коэффициент зависит от величины:

Следовательно, напряжения при ударе зависят не только от площади поперечного сечения стержня A (как при статическом приложении нагрузки), но и от длины стержня и жесткости материала Е . Чем больше длина l , тем напряжения при ударе будут меньшими. С увеличением модуля упругости напряжения увеличиваются.

С целью уменьшения динамических напряжений в технике используются различные амортизаторы, увеличивающие податливость стержня (резиновые прокладки, пружины) (рис. 13.8).

Рис. 13.8. Схема удара сжатием

с амортизатором – пружиной

В этом случае

Рассмотрим частные случаи.

1. При мгновенном приложении нагрузки, когда H = 0:

При этом напряжение и перемещение в два раза больше, чем при статическом приложении нагрузки.

2. Если высота падения груза Н велика, т. е.

то единицей в подкоренном выражении для определения динамического коэффициента можно пренебречь, тогда:



3. При очень больших величинах

можно пренебречьединицей и перед корнем. Тогда

Если известна скорость падения груза, а не высота падения, то динамический коэффициент может быть выражен через скорость. При свободном падении

·

Определение динамического коэффициента при продольном ударе стержней с переменным поперечным сечением.

Сравним прочность двух стержней, подвергающихся продольному удару. Один стержень имеет постоянную площадь сечения А , а другой на участке длиной l имеет площадь сечения A , а в пределах остальной длины стержня – , где п > 1 (рис. 13.9).

При статическом воздействии груза F оба бруса равнопрочны, так как наибольшие напряжения (при расчете без учета концентрации напряжений) в каждом из них

Рис. 13.9. Схема продольного удара

При ударном действии нагрузки динамический коэффициент для первого бруса равен:

Для второго бруса

Если длина l 1 очень мала, что имеет место, например, при наличии поперечных выточек, то приближенно можно принять:

Динамический коэффициент для второго стержня:

т. е. в раз больше, чем для первого стержня. Таким образом, второй брус при ударном действии нагрузки менее прочен, чем первый. Поэтому оказывается более выгодным уменьшать площадь сечения по всей длине стержня.

В качестве примера можно привести болт, передающий от одной части конструкции на другую растягивающий удар. Участок болта с нарезкой, имеющий меньший диаметр, будет работать как выточка. Обрыв болта весьма вероятен. Для улучшения конструкции необходимо сделать его площадь всюду (или почти всюду) равной площади по внутреннему диаметру нарезки. Этого можно достигать путем обтачиванием болта или высверливанием в нем канала (рис. 13.10).

Рис. 13.10. Болт, работающий на растягивающий удар

Поперечный изгибающий удар.

Рассмотрим балку, свободно лежащую на двух шарнирных опорах. Балка изгибается под действием груза F , падающего с высоты H (рис. 13.11).


Рис. 13.11. Схема поперечного изгибающего удара

Динамический коэффициент в этом случае определяется по формуле

где f ст – прогиб балки в месте падения груза при статическом ее нагружении.

Если а = b = l /2, то

Так же, как и при продольном ударе, внезапное приложение нагрузки на балку вызывает напряжение

Условие прочности при изгибающем ударе имеет такой же вид,
как и при продольном, т. е.

Учет массы тела, испытывающего удар.

Если груз падает на стержень, обладающий значительной массой, то решение значительно усложняется. Можно применить приближенное решение, оно сводится к замене реальной массы стержня приведенной массой, сосредоточенной в месте удара. Учет массы тела может оказать существенное влияние на динамические напряжения.

Если груз G падает на стержень, вес которого Q значителен, то динамический коэффициент определяется по формуле

где Н – высота падения;

β – коэффициент приведения массы стержня. Он зависит от способов закрепления концов стержня и вида удара (продольный, поперечный и т. д.). Для определения коэффициента β рассматривают кинетическую энергию стержня при его движении вследствие удара;

Q – вес ударяемого стержня;

G – вес падающего груза.

Рассмотрим частные случаи.

1. Продольный удар. Стержень постоянного сечения A защемлен одним концом. Объемный вес материала γ. Будем считать, что в момент удара верхний конец ударяемого стержня получает скорость V . Скорость нижележащих сечений стержня изменяется по линейному закону, достигая нулевого значения в нижнем сечении стержня (рис. 13.12).

Скорость движения произвольного сечения, расположенного на расстоянии х от нижнего сечения, будет равна:

Рис. 13.12. Схема продольного удара

Так как частицы стержня движутся, то стержень обладает кинетической энергией. Кинетическая энергия элементарной частицы стержня длиной dx будет равна:

Кинетическая энергия всего стержня с учетом данной формулы равна:

где т прив – приведенная масса стержня.

2. Поперечный удар. В этом случае балка постоянного поперечного сечения защемлена одним концом и испытывает удар груза на свободном конце (рис. 13.13)

Рис. 13.13. Схема консольной балки при ударе

Для балки, закрепленной шарнирно, удар приходится посередине пролета (рис. 13.14).

Рис. 13.14. Схема поперечного удара для однопролетной балки

Учет массы ударяемого стержня может значительно уменьшить динамический коэффициент.

More meanings of this word and English-Russian, Russian-English translations for the word «ДИНАМИЧЕСКИЙ УДАР» in dictionaries.

  • УДАР — m. impact, blow, stroke, shock, thrust; упругий удар, elastic impact
  • ДИНАМИЧЕСКИЙ — adj. dynamic, power, forced; динамическая система, dynamical system
    Russian-English Dictionary of the Mathematical Sciences
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Dynamic
    Русско-Американский Английский словарь
  • УДАР — 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) lash, …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • УДАР — body blow He has had a good many ups and downs in his life but his wife"s leaving him was …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic dynamic
    Русско-Английский словарь общей тематики
  • УДАР — 1) beat 2) blow 3) impact 4) shock 5) физиол. stroke
    Новый Русско-Английский биологический словарь
  • УДАР — Impact
    Russian Learner"s Dictionary
  • УДАР — knock
    Russian Learner"s Dictionary
  • ДИНАМИЧЕСКИЙ — dynamic
    Russian Learner"s Dictionary
  • УДАР
    Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Русско-Английский словарь
  • УДАР — м. 1. (в разн. знач.) blow; stroke; воен. тж. thrust; (острым оружием) stab; (плетью) …
  • ДИНАМИЧЕСКИЙ — dynamic(al)
    Russian-English Smirnitsky abbreviations dictionary
  • УДАР — beat, blow, brunt, bump, clashing, crack, impulse, flap, hit, impact, impingement, kick, percussion, impact shock, shock, slap, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamics, (о нагрузке) live
    Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — муж. 1) (в разл. знач.) blow; воен. тж. thrust; (острым оружием) stab; (плетью) lash, slash; (ногой, копытом …
  • ДИНАМИЧЕСКИЙ — прил. dynamic
    Русско-Английский краткий словарь по общей лексике
  • УДАР — (механический) impulse, impact, knap, blow, cant, collision, shock, hit, jab, kick, knock, percussion, stroke, thrust
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский словарь по строительству и новым строительным технологиям
  • УДАР — Collision
  • ДИНАМИЧЕСКИЙ — Vigorous
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Sprightly
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Peppy
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Go-ahead
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamics
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Dynamic
    Британский Русско-Английский словарь
  • ДИНАМИЧЕСКИЙ — Bouncy
    Британский Русско-Английский словарь
  • УДАР — impulse, impulsion, kick, knock
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский экономический словарь
  • УДАР — см. Размах на рубль — удар на копейку; см. Размах рублевый, удар фиговый
    Англо-Русско-Английский словарь сленга, жаргона, русских имен
  • УДАР — 1. blow (тж. перен.) (рубящий) chop; (колющий) stab, thrust; (столкновение) impact; (звук от толчка, сотрясения) crash, thud; ~ ногой kick; наносить ~ кому-л. deal*/strike* smb. a …
  • ДИНАМИЧЕСКИЙ — ~ный dynamic
    Русско-Английский словарь - QD
  • УДАР — blow
    Русско-Английский юридический словарь
  • УДАР — . Each impact of a molecule with (or on) a wall of the container ... . The impact …
    Русско-Английский научно-технический словарь переводчика
  • ДИНАМИЧЕСКИЙ — run-time
    Современный Русско-Английский словарь по машиностроению и автоматизации производства
  • УДАР — м. shock; beat; bump; knock - обратный удар
    Русско-Aнглийский автомобильный словарь
  • УДАР — impact
  • ДИНАМИЧЕСКИЙ — dynamic
    Русско-Английский толковый словарь терминов и сокращений по ВТ, Интернету и программированию
  • УДАР — m impact
    Russian-English WinCept Glass dictionary
  • УДАР — impact
    Русско-Английский биологический словарь
  • УДАР — муж. 1) (в различных значениях) blow воен. тж. thrust (острым оружием) stab (плетью) lash, slash (ногой, копытом) kick (кулаком) punch, …
  • ДИНАМИЧЕСКИЙ — прил. dynamic динамич|еский -, ~ный dynamic
    Большой Русско-Английский словарь
  • УДАР — удар nock;kick;hit
  • ДИНАМИЧЕСКИЙ — динамический dynamic
    Русско-Английский словарь Сократ
  • STROKE
  • STRIKE
    Большой Англо-Русский словарь
  • KICK
    Большой Англо-Русский словарь
  • DYNAMICIZER — I параллельно - последовательный преобразователь II устройство преобразования (данных) из статической формы в динамическую; динамический регистр dynamicizer вчт. динамический регистр
    Большой Англо-Русский словарь
  • DYNAMICAL — прил. динамический Syn: dynamic динамический - * test (техническое) испытание на удар динамичный; активный, энергичный; движущий; живой - * …
    Большой Англо-Русский словарь

Удар - это происходящее в результате соприкосновения взаимодействие движущихся тел.

Удар – что характерно для него?

Удар характеризуется резким изменением скоростей частиц взаимодействующих тел за малый промежуток времени, при этом сила удара достигает очень большого значения. В качестве примера можно привести действие кузнечного молота на кусок металла, удар падающего груза при забивке свай, воздействие колеса вагона на рельс при перекатывании через стык.

Удар – допущения при расчете

За время совершения удара очень трудно произвести измерения, связанные с определением силы удара. Поэтому обычно производится условный расчет на удар , по которому определяются внутренние силы и перемещения, возникающие в стержне. Сначала определяется наибольшее динамическое перемещение точки стержня, по которой наносится удар, а затем определяется напряженное состояние стержня.

Существуют следующие допущения при расчете стержня на удар:

Допущение 1: деформация стержня, вызванная ударной нагрузкой, описывается законом Гука, а сам стержень является линейно деформируемой системой. При этом модуль Юнга имеет такое же значение, как и при статическом нагружении стержня;

Допущение 2: работа, совершаемая падающим грузом, полностью переходит в потенциальную энергию деформации стержня;

Допущение 3: масса стержня, воспринимающего удар, пренебрежимо мала по сравнению с массой падающего груза;

Допущение 4: удар считается неупругим.

Динамический прогиб при ударе

Рассмотрим удар груза весом G, падающего с высоты h на балку (рис. 13.3).

Обозначим – динамический прогиб балки в месте падения груза.

Работа, совершаемая падающим грузом, равна: . Согласно допущению 2 , работа полностью переходит в потенциальную энергию деформации балки (V). По теореме Клапейрона потенциальная энергия деформации равна половине произведения некоторой динамической силы () на соответствующее ей динамическое перемещение (): .

Учитывая, что статический прогиб балки в месте падения груза G, вызванный его статическим приложением, равен , получим уравнение динамического прогиба балки: . Отсюда .

Динамический прогиб балки в месте падения груза: , где – коэффициент динамичности. .

Загрузка...